Belief Network Inference Algorithms: a Study of Performance Based on Domain Characterisation

نویسنده

  • N. Jitnah
چکیده

In recent years belief networks have become a popular representation for reasoning under uncertainty and are used in a wide variety of applications. There are a number of exact and approximate inference algorithms available for performing belief updating, however in general the task is NP-hard. To overcome the problems of computational complexity that occur when modelling larger, real-world problems, researchers have developed variants of stochastic simulation approximation algorithms, and a number of other approaches involve approximating the model or limiting belief updating to nodes of interest. Typically comparisons are made of only a few algorithms, and on a particular example network. We survey the belief network algorithms and propose a system for domain characterisation as a basis for algorithm comparison. We present performance results using this framework from three sets of experiments: (1) on the Likelihood Weighting (LW) and Logic Sampling (LS) stochastic simulation algorithms; (2) on the performance of LW and Jensen's algorithms on state-space abstracted networks, (3) some comparisons of the time performance of LW, LS and the Jensen algorithm. Our results indicate that domain characterisation may be useful for predicting inference algorithm performance on a belief network for a new application domain. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Belief Network Algorithms: a Study of Performance Using Domain Characterisation

Extended Abstract In this abstract we give an overview of the work described in 15]. Belief networks provide a graphical representation of causal relationships together with a mechanism for probabilistic inference, allowing belief updating based on incomplete and dynamic information. We present a survey of Belief Network belief updating algorithms and propose a domain characterisation system wh...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

Green Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling

With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...

متن کامل

Algebraic Techniques for E cient Inference in Bayesian Networks

A number of exact algorithms have been developed to perform probabilistic inference in Bayesian belief networks in recent years. These algorithms use graph-theoretic techniques to analyze and exploit network topology. In this paper, we examine the problem of e cient probabilistic inference in a belief network as a combinatorial optimization problem, that of nding an optimal factoring given an a...

متن کامل

Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)

Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996